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The Poincar6 group is replaced by U(3, 2), the pseudounitary extension of the 
de Sitter group S0(3, 2), as internal and space-time symmetries are combined in 
a geometric setting which invalidates the no-go theorems. A new model of elemen- 
tary particles as vertical vectors on the principal fiber bundle U(3, 2) ~ U(3, 2)/ 
U(3, 1) x U(1) is introduced and their interactions via Lie bracket analyzed. The 
model accounts for the four known superselection rules: spin, electric charge, 
baryon number, and lepton number. 

1. INTRODUCTION 

For  some time, many physicists have felt that a realization of  Einstein's 
vision of  a totally unified field theory would be necessary to provide a 
framework for elementary particle phenomena~ The so-called "grand unified 
theories" (GUTs) attempted to explain the strong and weak nuclear forces 
and the electromagnetic force in terms of  one fundamental force. The most 
successful of  these theories was that of  Georgi and Glashow (1974), based 
on the gauge theory of SU(5). In spite of  the initial success of  this program, 
there were several fundamental problems. The GUTs do not attempt to 
describe gravitation and thus fall short of  being totally unified theories. Also, 
most GUT-type theories lead to the possibility of  proton decay and predict 
particles which have not been observed. The introduction of  supersym- 
metries and "supergravity," designed to incorporate gravity and by-pass the 
"no-go"  theorems, have only introduced more unobserved particles and thus 
widened the chasm between theory and observation. Consequently, a new 
program of  particle interactions and quantization is needed and one will be 
introduced in this series of  papers. 
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The history of theoretical physics may be viewed as a search for conser- 
vation laws. Although the program had to be modified as research pro- 
gressed, the original motivation was the observation that, within the 
Lagrangian formalism, conservation laws in turn imply the action of a con- 
tinuous (Lie) group. Consequently, it seems that the search for a totally 
unified field theory is a search for the correct Lie group. The Lie group will 
characterize the conservation laws, and consequently, the geometry of the 
Lie group will characterize the interactions of the elementary particles as 
well. There are no conservation laws associated with the so-called "super- 
symmetries," so they will not be used in the present work. 

We begin a study of the elementary particles by describing their inter- 
actions, and conversely we begin a study of the fundamental forces by disco- 
vering those particles which interact via those forces. Any mathematical 
model of reality must begin with some assumptions about the way nature 
works. If we are to base our physics on group theory, it must lead to exact 
conservation laws: energy, momentum, angular momentum, spin, charge, 
baryon number, lepton number, etc. 

The triumph of general relativity coupled with Einstein's vision of a 
unified field theory, as well as the successes of the geometric approach to 
gauge theories, suggest that we should look for a model which includes 
gravitation (which means that it should be based on geometry, like general 
relativity), in which the forces are distinct, but ultimately are derived from 
the same geometry. The successes of gauge theories and of geometric quanti- 
zation suggest that this geometry of elementary particle interactions should 
be based on the homogeneous space of some Lie group. 

The geometry of elementary particles to be studied here has evolved 
from the geometric setting the author introduced several years ago (Love, 
1984). The many reasons for looking at SU(3, 2) were discussed in that 
paper, but here the group SU(3, 2) is viewed as an extension of the well- 
studied de Sitter group S0(3, 2). 

Once a group is chosen, there are many ways to obtain physics from 
the group. The prescription of the gauge theories runs into problems in the 
case of noncompact groups. But on a more fundamental level, a fatal flaw 
of the Lagrangian approach is the inevitable appearance of infinities when 
such a theory is quantized. 

The Hamiltonian approach is essentially equivalent to the Lagrangian 
approach and will not be used as our starting point, although a 
"Hamiltonian" will appear in the final formulation of the theory. The stand- 
ard way of introducing groups into physics is to look for the symmetries 
of the Lagrangian, the Hamiltonian, the S-matrix, or the space-time. The 
approach taken here is that the group SU(3, 2) is the fundamental object and 
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demands that the physically relevant operators (the observables in quantum 
theory) and the space-time be constructed from the generators of su(3, 2). 
We will not be using SU(3, 2) in any standard way. Perhaps the closest 
concepts in the literature are the dynamical groups of Barut (1980) and 
Roman (1980) and the spectrum generating groups of Bohm (1986). 

No matter how well (or how poorly) motivated the introduction of a 
specific group is, the most crucial test of the criteria is the agreement of the 
model developed from the group geometry with experimental data. However, 
it should be remembered that the pre-Copernican model of the solar system 
based on epicycles was very precise and very accurate simply because so 
many people had worked so long refining it. Thus, accurate predictions are 
not the only criterion for judging a scientific theory. Beyond offering a new 
level of precision, the present theory has an elegance which could never be 
found in the perturbations and renormalizations of the standard model. 

The problem addressed here was posed by Robert Hermann (1980): 
"What the Einstein theory has, and elementary particle theory so far lacks, 
is a compelling geometric foundation and intuition." The work presented 
here is designed to provide such a geometric foundation for elementary 
particle theory. The general mathematical setting was also suggested by 
Hermann (1977): "there are complicated and immensely rich (but badly 
understood) relations between classical and quantum mechanics, Lie group 
theory and symplectic manifold theory." 

The de Sitter group is a well-studied alternative to the Poincar6 group. 
In a way, SU(3, 2) is a complex version of S0(3,  2). Thus, I am asserting 
that a complex extension of so(3, 2) is correct instead of a "super-extension" 
of the Poincar6 algebra. The complex structure is a reasonable alternative 
to the "super-structure" since both assert a discrete symmetry of the algebra. 
Actually, if complex scalars are permitted, as they must be for quantum 
theory, then a complex structure and a super structure are identical. A 
complex structure on the tangent space of a manifold is a mapping 
J : T M  ~ T M  with ,/2 = _ 1. If J is a complex structure, then iJ is a super- 
structure, for (i j ) 2 =  1. 

The "no-go" theorems show the impossibility of obtaining the correct 
mass spectrum of elementary particles with an extension of the Poincar6 
group by a compact Lie group. These "no-go" theorems show that such an 
extension is physically irrelevant. The compact symmetries are necessary to 
describe the strong and weak nuclear forces and to obtain the correct mass 
spectrum. The Lorentz group is necessary to obtain relativistic dynamics. 
Since the compact groups cannot be adjoined to the Poincar6 group, we must 
conclude that the Poincar6 group is not the physically relevant extension of 
the Lorentz group. The "no-go" theorems were misnamed; they should have 
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been labeled as the "No way, Poincar6" theorems. Because the Lie algebra 
used here (the space of vertical vector fields) is infinite dimensional, the no- 
way Poincar6 theorems are not valid (Coleman, 1967). 

2. THE ALGEBRA 

When trying to use group theory to close the great chasm between 
quantum theory (the theory of elementary particles) and general relativity, 
one must learn from the experiences of both sets of scholars. For the relativ- 
ist, the importance of the group setting lies in the fact that the primary 
symmetry group G has a subgroup H such that the quotient space G/H 
yields a variable model for space-time (Halpern, 1983): Minkowski space is 
the quotient of the Poincar6 group modulo the Lorentz group; de Sitter 
space is S0(4, 1)/S0(3, 1) and "anti-de Sitter space" is S0(3, 2)/S0(3, 1). 
Taking a clue from these cases, the homogeneous space SU(3, 2)/SU(3, 1) 
perhaps should be important. But this is a nine-dimensional manifold and 
the physical relevance is not clear. However, the homogeneous space 
SU(3, 2)/SU(3, 1)x U(1) is an eight-dimensional manifold which can be 
understood physically as a four-complex-dimensional space-time naturally 
equipped with a pseudo-Hermitian metric of signature ( -  - - +).  Since 
this homogeneous space-time is a complexification or "quantization" 
(Rosen, 1962) of S0(3, 2)/S0(3, 1), anti-de Sitter space (ADS), I will dub 
it "quantum anti-de Sitter space"--QAdS for short. Since QAdS is the 
quantum version of AdS, it is a physically viable candidate for space-time 
since the natural metric on QAdS satisfies the complex version of Einstein's 
equations (Pleblanski, 1975). 

For the particle physicist, the important group is the fiber group; the 
geometry of the fiber bundle determines the "internal structure" of the parti- 
cles (with the details depending upon the particular model). The research 
done by elementary particle theorists has shown that SU(3) • SU(2) • U(1) 
is an important group, but the SU(2) factor must be broken. By design, 
SU(3) x SU(2) x U(1) is the maximal compact subgroup of SU(3, 2). But in 
the passage to the homogeneous space, the symmetry of the group SU(3, 2) 
is broken to SU(3, 1)• U(I), whose maximal compact subgroup is 
SU(3) x U(I)• U(1). Thus the only broken compact symmetry is SU(2) 
breaking to U(1) as required. These observations make some connection 
with standard quantum theory and are important clues that we are on the 
right track. The remainder of this series of papers will show that the clues 
are correct and that the bundle of vertical vector fields forms a viable model 
of elementary particles. 

Having the group and a complex space-time, we are still in a quandary 
since the standard gauge theory recipes do not work for a noncompact 
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group. The existing recipes for noncompact groups lead to nonrenormaliz- 
able theories. To build a workable model requires reworking of the mathe- 
matical foundations of quantum theory and relativity. Lie derivatives are 
used instead of the covariant derivative and "gauge fields" are interpreted 
as "vertical vector fields" instead of "Lie algebra-valued forms"; thus the 
present theory is not a "gauge theory." 

Mathematically, this is justified by the fact that the Lie derivatives are 
extensions of the adjoint representation and it is the group action which 
leads to conservation laws. Thus, each generator of SU(3, 2) has a corre- 
sponding Lie derivative and in a Lagrangian theory would have a corre- 
sponding conservation law. There is no correspondence between covariant 
derivatives and conservation laws. The Lie derivatives also seem better suited 
for dealing with the coherent state formalism (Kaiser, 1990) than the covari- 
ant derivative. Physically, the only justification for a new mathematical 
model is that it explains the data better than does the existing models; that 
the present model satisfies this criterion will be shown in this series of papers. 

The complex space time causes some consternation. If we think of a 
complex variable as a+ ib, it seems that we are adding four unobserved 
dimensions to space-time. From the viewpoint of Kaluza-Klein theories, it 
is necessary that the extra dimensions be compactified. But to pass from the 
Lie algebra to the space-time coordinates requires that we exponentiate the 
a + ib to obtain e a § eaeib, and hence the additional coordinate e ib is a circle 
and compact. This coordinate looks more like a phase angle than any other 
known property of wavefunctions. The complex space-time QAdS can loc- 
ally be coordinatized as a product of AdS with four circles, reminiscent of 
the spaces used in some supersymmetry theories. To relate the geometry to 
physics, the structure constants must be changed to obtain an isomorphic 
algebra. The size of these circles is governed by the scaling of the structure 
constants and will determine the strength of the interactions are possible, 
but does not predict the force strengths. 

Fubini et al. (1973) (FHJ) suggested a new formulation of quantum 
field theory based on group theory. They defined three types of generators: 
kinematic operators, dynamical operators, and the evolution operator. In 
the present picture we naturally have the same three types of operators: 
the kinematic operators correspond to the vertical vectors, the dynamical 
operators correspond to the horizontal vectors. But for the evolution opera- 
tor to correspond to the dilation operator as it does for Fubini et al. requires 
that we enlarge the group to U(3, 2), where the dilation operator is then the 
center of U(3, 2). But this does not change the geometry of the base space 
since SU(3, 2) /SU(3,  1) • U(I) is diffeomorphic to U(3, 2)/U(3, 1) x U(1). 
Thus, a program similar to the FHJ formulation of quantum field theory 
can be carried out in this non-Euclidean geometric setting. 
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The introduction of the homogeneous space QAdS is essentially break- 
ing the symmetry from U(3, 2) to U(3, 1) x U(1). In the Higgs approach to 
symmetry breaking, each generator of U(3, 1) • U(1) should then represent 
a Higgs boson. In the standard model, each of the eight generators of SU(3) 
represents a gluon, the three generators of SU(2) each represent an interme- 
diate boson, and the U(1) generator is a photon. In the U(3, 2) model, we 
modify the Higgs program to require that each generator of the broken 
symmetry represent a family of particles, each of which contains a fundamen- 
tal particle. 

Kursunoglu (1979) observes that the neutron is in some sense a tightly 
bound state of a proton and a pion: n = (p, ~r-). Furthermore, it seems that 
a pion is, in turn, a tightly bound state o f  an electron and an antineutrino: 
Jr- = (e-,  P). Given the importance of Lie algebras in elementary particle 
physics (Georgi, 1982), a natural question arises: is it possible to replace the 
above parentheses by Lie brackets? 

The answer is not obvious, since there are some fundamental questions 
to answer. Since [Tr-, p] = - [p ,  ~ -  ], is n = [Tr-, p] or is n = - [ l r - ,  p]? Because 
of complexities like this, we cannot just write down some relationships 
and expect them to form a Lie algebra. We must use another plan of 
attack. 

The basic strategy was suggested by Segal (1963): 

�9  after a tentative fundamental symmetry group (or, equivalently a Lie algebra) 
has been selected, the main steps involved in formulating a specific physical theory 
of elementary particles may be outlined as follows. 

First, certain linear representations of the group must be specified and con- 
nected with designated elementary particles (where "elementary" does not neces- 
sarily have any absolute meaning, but refers only to its empirically observed role). 
Second, a maximal Abelian diagonalizable subalgebra of the group algebra must 
be designated; the spectral values for the elements of the subalgebra give the so- 
called "quantum numbers" for the particles in question. Usually it is the infin- 
itesimal group algebra or so-called enveloping algebra of the Lie algebra which 
is employed, after augmentation by the quite limited subgroups of elements in 
the absolute center of the group, involving only one nontrivial element in the 
relativistic case, which specifies whether the spin is integral or half integral. 
Thirdly, these quantum numbers must be connected with experimentally measur- 
able quantities, which involves the construction of a dictionary between the quan- 
tum numbers and conventional ones employed with the standard relativistic 
theory as augmented by various internal quantum numbers such as strangeness, 
baryon number, etc. 

As Segal noted, within the theory of Lie algebras, there is a "natural" 
spectrum-generating subalgebra: the Cartan subalgebra. The eigenvalue of 
the spectrum-generating algebra are additive just like the quantum numbers 
of elementary particles, if their interaction is via Lie bracket�9 Denote an 
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element of  the Cartan subalgebra by ~,, and let x and y be eigenvectors of  
~,; then if [~,, x ] = a x  and [~,,y]=by, then 

[r ,  [x, y]] = [[r,  x], y] + [x, I t ,  y]] 

= [ax, y] + [x, by] 

= a[x, y] + b[x, y] 

= (a+b)[x ,  y] 

When we replace the matrix representation of  the Lie algebra by a 
representation with differential operators and use the Lie derivative, then 
the same eigenvalues are obtained from the tensor product. 

If  p is the proton with charge 4-1 and 7/is the charge generator, then 
we should have [~,, p] =p.  If  then we take the transpose (or the adjoint), we 
have 

[ y, p]T = pT 

[pT, ?,v] =pa" 

so that [~,T, pT]=_pT,  but we can take 7' to be diagonal; then 7/'r= 7 and 
[7:V, pT] = _pa-. Thus if the eigenvalues are the charges, the charge of the 
transpose is the negative of the charge of the original, which is exactly the 
relationship between the charge of  a particle and its antiparticle. So we make 
the supposition that the matrix representing an antiparticle is the transpose 
(or adjoint) of the matrix representing the particle. 

The simplest possible representation would be that each particle is 
represented to be a matrix with all zeros except one nonzero entry, which 
would be a 1. Let ZH be the matrix with a 1 in the IJ  position and zero 
everywhere else. 

In this case, we could take the elements of  the Cartan subalgebra to be 
the elements with their one on the diagonal. 

Then, for instance, with 7:=Zr, as the charge generator and p+ = Z u  
and p -  = Zj~, we would have 

[~/, p+] = [ gl l ,  ZIj] = Z u = p  + 

and 

[r ,  p -  ] = [ z . ,  z j,] = - z , .  = - p -  

We see that the particles on the same row as p+ would also have 4-1 
"charge," while all particles in the same column as p -  would have - 1  
"charge." Thus, we can align all the positively charged particles in the same 
row as p+ and all the negatively charged particles on the same column 
as p-. 
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The next question is how many particles do we try to include? Let 
us begin with the minimum of those electrically charged particles already 
mentioned: e - ,  7r-, p+, and their antiparticles. 

According to the discussion above, we should align them as 

~'1 e-  

7"2 ~r_ 

7"3 p -  
c + 7r + p+ ~/4 

Thus, we would have 74 as the generator of the electric charge. Now 
let us use the Lie bracket to fill in the above chart with re- = Z24 and p+ = 
Z43. Then 

[p+, ~-1=[Z43 , Z24 ] = z 3 2 = n  

Experimentally, we know that 

( t r + , e - ) =  v 

Thus, 

[Tr +, e-]  = [Z42, Zi4] =-Z3~ = - v  

The last slot is filled by observing that the hydrogen atom H is a tightly 
bound state of  the proton and electron, H = (p+, e-) .  We have 

[p+, e-]  = [Z43, Zi4] = -Z13 = - H  

Taking antiparticles as transposes, and we have the 4 by 4 matrix filled: 

71 v H e-  

9 7'2 n ~r- 

Iq t~ ~'3 p -  

e + 7r + p+ ~4 

(2.1) 

However strange it may seem to have an atom in the same matrix as 
"elementary" particles, we must get over our prejudices, for the presence of 
the hydrogen atom is dictated by the requirement of closure of the Lie 
algebra and thus the hydrogen atom is "elementary" in the sense used by 
Segal. 

This Lie algebra structure is "natural" in the sense that it is independent 
of  any theory. The only hypothesis was that the interactions occurred via 
the Lie bracket. This hypothesis was confirmed by construction. Now come 
the connected problems of the incorporation of other known particles and 
the interpretation of this result. 
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Can we enlarge the matrix and include more particles by adding another 
row and column? If we could, there must first be a charged particle to put 
above the electron. As an example, let us put the muon in that position: 

Y0 A B C p -  
A )'1 v H e- 

/~ 9 )'2 n rc - (2.2) 

I 7I R )'3 P-  

P+ e + /r + P+ )'4 

to be determined. If (2.2) were where A, B, and C denote particles which are 
valid, we would have the reactions 

A = D-, e+] 

B= [p-,  rc + ] 

C = [ ~ - , p  +] 

and thus we would have the decays 

A ~ -  e + 
+ 

B~/~- 7r 
4- 

C=~/~ - p 

But these decay products are not observed in the decays of any known 
+ 

"elementary particle"; on the contrary, it is known that the ~ -  and the p 
combine to form a "mesonic atom" which resembles hydrogen. Thus, the 
/~- seems to be a heavy electron. Thus, putting the muon in this position is 
not possible. Likewise, putting any known charged particle in this position 
causes similar problems. 

This shows that the matrix Lie algebra cannot be enlarged to include 
any more particles in a way consistent with experiment. The impossibility 
of enlarging the matrix to include all particles shows the inadequacy of the 
matrix representation. We are forced to go to a representation of the Lie 
algebra by differential operators, i.e., as vector fields on an appropriate 
manifold (Abraham and Marsden, 1979). Thus, elementary particles are 
modeled asfX, wherefis a function on the manifold underlying U(3, 2) and 
X is an element of U(3, 1) schematically represented in the above matrix. 
Each of the 16 entries in (2.1) then represents a family of particles having 
the same algebraic factor X and differing only by the function factor F. 

At first glance, the representation in (2.1) appears to be very arbitrary. 
The major goal of this series of papers is to show that, up to isomorphism, 
this representation is not arbitrary, but rather carries vital information about 
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the particles and their properties. The major difference between the represen- 
tation in (2.1) and the standard picture is that all of the particles in (2.1) 
have been observed: neutrino, electron, proton, neutron, pion, hydrogen 
atom, and their antiparticles. 7/4 is the photon, while 72, 7/3, and 7/j are 
photonlike neutral currents. 

The 7/x each mediates a different interaction or force. These diagonal 
operators also serve as spectrum generators with eigenvalues 1, 0, or -1  
(Table III). The 7/I eigenvalue is the lepton number; thus, 7/~ is a weak 
neutral current. The 7/3 eigenvalue is the baryon number, and thus 7/3 is a 
strong neutral current. The 7/4 eigenvalue is the electric charge; thus 7/4 
represents a photon. Since the sum of the four eigenvalues is zero, in a way 
the 7/2 eigenvalue is superfluous, but the force mediated by 7/2 seems to be a 
new weak force. Actually, there is not a "new" force; this analysis just shows 
that the interaction which has heretofore been thought of as the weak force 
is actually best understood as being two forces. This is not the "fifth force" 
which has been introduced by other researchers. But here is another reason 
for concluding that the matter matrix cannot be enlarged, for enlargement 
would require the introduction of another force. 

The other surprise in (2.1) is the mixture of fermions and bosons in the 
same representation. Now, if the Lie algebra is to act as a representation 
space for the Lie group, it seems that a continuous action of U(3, 1) on a 
particle state could take it into another state, mixing bosons and fermions, 
etc. But of course, this is physically impossible, so it must be mathematically 
impossible. Consequently, when describing the algebraic factor of the par- 
ticle, we must deal only with the Lie algebra and not allow the continuous 
group action on the fiber bundle. This approach was suggested by Lipkin 
(1965): "The Lie algebra of the larger group is defined, but only a subset of 
the continuous transformations need have physical meaning, namely, those 
which produce continuous translations in space-time and not in the space 
of internal degrees of freedom." Perhaps even these continuous trans- 
formations are not needed if space-time itself is quantized. 

Thus, following Lipkin's lead, we should expect the continuous repre- 
sentations of U(3, 2) to enter the discussion only in the description of the 
function factors, i.e., only in the action of the group on the homogeneous 
space. 

There is another way of viewing the problem: because of the origin of 
the Lie algebra structure as the elementary particles interacting, there cannot 
be a corresponding Lie group structure. The particles themselves are the 
operators in the Lie algebra and while one can exponentiate a matrix, how 
could one physically exponentiate a proton? 

The 7/r eigenvalues, as roots of the Lie algebra, are preserved during 
interactions only if we insist that the particles interact via the Lie bracket. 
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Thus we have four conserved quantities (the internal quantum numbers 
as eigenvalues of the 7~i), but no continuous group action. This observation 
has an immediate theoretical consequence. Noether's theorem states that 
within the Lagrangian formalism there is a one-to-one correspondence 
between conserved quantities and the generators of continuous group 
actions. Thus, the Lie algebraic structure of the elementary particle inter- 
actions cannot be incorporated into the Lagrangian formalism. Instead of 
the Lagrangian structure of the quantum field theories we should expect the 
field equations to arise from the geometric and Lie group formalism. 

This is a new way of using Lie algebras in particle physics. The presence 
of the Lie algebra does not indicate a symmetry of the system; instead, the 
Lie bracket models the way in which the elementary particles interact. If 
Noether's theorem were applicable, the only possible conserved quantity 
would be the particle type, which is only conserved in certain interactions; 
hence Noether's theorem is not applicable and we are not dealing with a 
Lagrangian field theory. 

Since this is a radical departure from standard physical models, further 
remarks seem necessary. Why was the Lagrangian approach used? Schweber 
(1961, p. 257) states: "It is only when we consider interactions between fields 
that the Lagrangian approach achieves a status of its own: it is in fact the 
only known simple method for introducing interactions between the particles 
and for which a quantization procedure can be formulated." In this paper, 
a new type of interaction is introduced: the Lie bracket. Quantization is 
achieved by requiring that the vertical vectors be eigenvectors of the Cartan 
subalgebra as well being eigenvectors of the generalized Casimir operators 
of U(3, 2). So it seems that this approach has passed the first test of being 
a viable alternative to the Lagrangian formalism. 

Using the matrix representation, the interaction of a proton and electron 
was calculated above to yield a hydrogen atom. Using the standard operator 
representation (ZIj ~ u~j) for the same interaction, we have 

[p+, e-]  = [u4a3, ulO4] =-u la3  = - H  

The negative sign does not appear to have physical significance other 
than to introduce a double-valued representation, - H  = H; which is essential 
if these vertical vectors are to act as spinors. Physically, changing the order 
of particles must yield the same product. 

Besides the interaction p§ the interaction p+e-~nv is also 
possible and at first glance this model seems to predict the necessity of a 
hydrogen atom intermediate state in the p§ e-  --* n v interaction. But there is 
no need for the reaction to go this route. The kinetic energy of the p§ 
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will create a neutrino-antineutrino pair and thus the reaction would go as 
follows: 

p+e- ~p+e-f,v~p§ -, P]v ~ [p +, [e-,  P]]v ~ 4 p  +, [e-,  r 

Since, as will be seen in Part II of this series, the W-  has the algebraic 
factor of  [9, e-] ,  this seems to be a mathematical way of saying that the 
interaction proceeds via an exchange of the W- .  

3. GRADING THE LIE ALGEBRA 

The interaction of a particle with the diagonal operators yields a multi- 
ple of the particle. The particles are eigenvectors of  the diagonal operators 
Z ,  with eigenvalue 1, 0, or -1 .  These numbers are the roots of the Lie 
algebra and the eigenvectors are the roots vectors. 

Example: 

[Y4, e-]  = [u404, Ul04] ~-- - U l O 4  = - e -  

[7/4, e + ] = [u4~4, U4Ol] = U4Ol = e + 

[•4, H] = [/./404, RIO3] = 0  

The roots are 1, 0, or -1 ,  but 1, 0, or -1  what7 The units to be attached 
to these quantities determine the strength of the interaction. Proper scaling 
will allow us to adjust the interaction strengths to those observed in nature. 
These scaling constants will also determine the mass spectrum predicted by 
the model and will be discussed in a later paper in this series. 

The position of the particles within the matrix is indexed by the standard 
numbering of the rows and columns of the matrix: 

11 12 13 14 

21 22 23 24 

31 32 33 34 

41 42 43 44 

The particles carry a Z2 grading defined by adding the indices i+j 
modulo 2: 

0 1 0 1 

1 0 1 0 

0 1 0 1 

1 0 1 0 
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If  we now form the matrix with entries ( -1)  i +J, we obtain a matrix 
familiar from linear algebra, the matrix of the sign of the cofactor: 

1 - 1  1 - 1  

- 1  1 - 1  1 

1 - 1  1 - 1  

- 1  1 - 1  1 

This Z2 grading agrees with the standard grading of particles with even 
(=I )  and odd ( = - 1 )  half-integer spin. Furthermore, this grading is pre- 
served under the interaction via the Lie bracket. 

Since the grading is preserved under the Lie bracket, we must ask if 
there is an operator whose eigenvalues yield this grading. Thus we will look 
for a linear combination of  the 7 whose eigenvalues are the spins of the 
particles. Let S = a~rl + b)'2 + C~3 "1- d~4 ; then the eigenvalues associated with 
the particles are 

v a - b  

H a - c  

e -  a - d  

Fl b - s 

~r- b -  d 

p -  c - d  

Since we want these numbers to yield the spin of the particles, we have 
to solve six linear equations in three unknowns: 

(1) 
(2) a - c = O  

(3) a - d =  �89 
I 

(4) b - c = ~  

(5) b - d = O  
(6) c - d = � 8 9  

From (2), a=c, while from (5) we conclude that b=d. Then (1), (3), 
and (6) are identical and incompatible with (4). I f  instead of (4) we take 

I 
b -  c = - ~ (4') 
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the physics is still consistent and so are the equations. The system then 
reduces to a =  c, b=  d, and a=b + �89 These are three equations in four 
unknowns and hence there is a free parameter in the solution. The general 
solution is then 

= =  +�89 a c a 

b = d = a  

Thus there are several ways of writing S: 

S = (7/! + 7/3)/2 + a (7/i + 7/2 + 7/3 "[- 7/4) 

Take a =0 ;  then S =  (7/i + 7/3)//2. 
Take a = - � 8 9  then S = - ( 7 / 2 +  7/4)//2. 
Take a = - �88 then S =  (7/t - 7/2- 7/3- 7/4)//4. 
With this information, we can solve the equation S =  -(7/2+ 7/4)/2 for 

7/2, obtaining 

7/2 = - 2 S -  7/4 

Thus we see that the 7/2 eigenvalue is not a new invariant, but just a linear 
combination of familiar quantum numbers, the spin and the electric charge. 

There is also an explanation for the above grading in terms of Barut's 
(1980) suggestion that all particles are built from the proton, electron, and 
neutrino (the stable particles) and their antiparticles. From the results of 
Table I, we know that all of the particles are built from the stable particles: 

H = [ p  +, e-],  ~r- = [e - ,  P], n = [ p  +, [e-,  17]] 

If  we replace each particle in the matrix by the number of stable particles 
required to build the particle, we obtain 

2 1 2 1 

1 2 3 2 

2 3 2 1 

1 2 1 2 

duplicating the above even-odd pattern. This picture of elementary particles 
was also hinted at by Kursunoglu (1979). 

Other gradings have also appeared in the literature. Gunaydin and 
Saclioglu (1982) dealt with a "three-dimensional graded structure." They 
observed that certain Lie algebras L "can be decomposed in the form: L = 
L ' +  L~ L § . Where L ~ is the Lie algebra of the maximal compact subgroup 
that contains an Abelian U(1) factor. The generator of this U(1) is simply 
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the number operator that naturally gives us the three-dimensional graded 
structure." In the present model, this U(1) factor could be ?'4 and the 1, 0, 
-1  is simply the charge of the particles represented by the generators. But 
the other diagonal operators also have eigenvalues of 1, 0, or -1  and also 
provide a "three-dimensional grading" of u(3, 2). Thus, there are four such 
gradings and it seems better to think of a table of eigenvalues (roots of the 
Lie algebra) rather than a grading of the algebra. 

The presence of the hydrogen atom along with the other particles one 
ordinarily thinks of as "elementary" comes as a shock at first. But if we are 
to include all particles and their interactions, this is a necessary inclusion, 
for the Lie algebra must necessarily be closed and since p+ and e- are 
elementary particles, their bracket [p+, e-]  = H must also be in the Lie 
algebra and hence is elementary in some sense. But after the initial shock of 
including an atom among "elementary particles" wears off, we realize that 
this helps us to analyze the particle spectrum. Since there are different mass 
states of the hydrogen atom corresponding to the well-known different 
energy levels of the atom, the only consistent conclusion is that the higher- 
energy elementary particles are in the same way higher-energy levels of the 
16 fundamental particles in the above matrix. These higher energy states are 
identified in Part II of this series. Other "elementary particles" are analogues 
of nuclei formed from these excitations. 

Dyson (1966) noted "a growing similarity, both in the observed data 
and in the theoretical analysis, between nuclear and particle physics. This 
point of view may be regarded by some people as nihilistic, so far as particle 
physics is concerned, since it implies that the continued discovery of more 
and more resonances may be ultimately as unilluminating as the discovery 
of more and more isometric states of nuclei." This "growing similarity" also 
extends to the high Rydberg states of atoms. While interesting in their own 
right, the discovery of new excited states of particles cannot induce the same 
excited states in physicists as they once did. 

This classification of the elementary particles is a radical departure from 
the Gell-Mann classification. Gell-Mann placed particles of the same mass 
into a representation or multiplet. Here, the complexification of u(3, 1) 
includes the photon and the neutrino as well as the proton and hydrogen 
atom, from massless to very massive. The success of Gell-Mann's multiplet 
program indicates that the Casimir operator of SU(3) is included in the mass 
operator. Since SU(3) is a subgroup of SU(3, 1), we assure this by taking 
the Casimir operator of U(3, 2) as the energy operator. 

This identification of particles with the Lie algebra of u(3, 1) is novel 
in several respects. Usually when dealing with noncompact Lie algebras, 
physicists have insisted that only the compact generators can represent parti- 
cles. The reason elementary particle physicists eschewed noncompact groups 
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is that the unitary representation of noncompact groups is infinite dimen- 
sional and in the Gell-Mann classification this would lead to the absurd 
conclusion that there is an infinite number of elementary particles of the 
same mass. There is an infinite number of high-energy states of the hydrogen 
atom, although the higher levels are very unstable and difficult to produce. 
In the above list, the noncompact generators represent the negative norm 
states as well as the charged particles. Bracketing with a noncompact gener- 
ator changes the particle type from compact (neutral) to noncompact 
(charged) and vice versa. This phenomenon occurs in the Dirac theory, 
where "the electric field induces transitions of the particle between the posi- 
tive- and negative-energy states of a free particle" (Preparata, 1979, p. 33). 
The big difference is that in the present picture, the electric field is not a 
perturbation, but is built into the geometry of the particle and furthermore, 
it is the interaction with the charged particle itself, not just the electric field, 
which induces the transition from positively normed states to negatively 
normed states. Thus, except for interaction with a charged particle, there is 
no transition permitted between positively normed states and negatively 
normed states. 

For each of the 16 elements or the basis of the Lie algebra u(3, 1) there 
is a family of particles. Thus, for each of these basis elements there is a space 
of functions which can act as the function factors of that element of the Lie 
algebra. Essentially, then, there are 16 "Hilbert spaces," one for each basis 
element of the Lie algebra u(3, 1). In the standard Fock space approach to 
quantum field theory, these 16 spaces would be put together as a tensor 
product. Likewise, in the present picture, there will be an infinite number of 
particles or resonances within each of the 16 families of particles as well as 
many other particles formed like nuclei from these excited states and mod- 
eled as tensor products. Here, the total space is not just a tensor product, 
but carries a Lie algebra structure. Then there are many more particles to 
be discovered within the present framework. The theory does predict that 
all particles fall into this framework. 

Since the only consistent interpretation of Z13 = [p§ e-]  is as the hyd- 
rogen atom, the distinction between particle physics and atomic physics is 
blurred from the outset. The line between particle physics and nuclear phys- 
ics is just as unclear, since, as we will see, several of the "elementary particles" 
are composite. 

The list of "fundamental particles" contains all of the "everyday" parti- 
cles: the pre-1935 particles. The appearance of the hydrogen atom on this 
list forces us to conclude that the other "elementary particles" are excitations 
or combinations of the fundamental particles in the same way that high 
Rydberg states are excited states of the hydrogen atom and nuclei are combi- 
nations of protons and neutrons. These excitations will have a different 
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function factor and the combinations allowed will be modeled as tensor 
products. We must expect the fundamental particles to be the lowest energy 
states for the given algebraic factor. 

4. THE GEOMETRY OF ELEMENTARY 
PARTICLE INTERACTIONS 

To model a particle as f X  requires an intimate relation between the 
function fac tor fand the algebraic factor X. This relation will be the subject 
of a later paper in this series; suffice it for now to say that f will be an 
eigenfunction of several operators--the generalized Casimir operators of 
U(3, 2)--and associated with each X is a dynamical group chain from which 
these operators will be constructed. These operators determine the mass, 
momentum, and other invariants of the particle. 

This relation betweenfand X is essentially a relation between the geom- 
etry of the base and the geometry of the particle interactions which take 
place in the vertical bundle. We will show that it is possible to interpret these 
vertical vectors in terms of the curvature of the base. The space-time indices 
of u(3, 2) were suppressed in the discussion of particles. The full param- 
eterization of the complexification of u(3, 2) would be 

where the 

7/1 v H e- Q1 

I~ 7/2 n n" - Q2 

r7 7/3 P-  Q3 
+ re+ p+ e 74 Q4 

PI P2 P3 P 4  7/5 

generators of U(3, 2), 

(4.1) 

a s+P3 ,  X4=Q4-P4, Yl=i(Qi--Pl), Y2=i(Qz-P2), Y3=i(Q3-P3), and 
Y4=i(Q4+P4); are the basis for the tangent space of the complex space- 
time QAdS. The Xz are the tangent vectors of AdS. 

The bracket of QI with a conjugate momentum Pj yields a "particle." 
This is illustrated in Table III. Technically, these vertical vectors, or particles, 
arise as the sectional curvature of QAdS. There are no quarks, but rather, 
the dimensions of QAdS replace quarks as the building blocks of matter, 
but not just hadronic matter, for in this geometry, the leptons are built from 
the same "stuff": space-time itself. The basic building blocks of matter are 
not particles, but the coordinates of QAdS, i.e., the dimensions of (complex) 
space-time itself. Bracket them and one obtains a particle. There are no 
quarks, unless the coordinates of space-time are considered to be the quarks 
(Preparata, 1979). 

i.e., Xt=Ql+Pj, X2=Q2+P2, x3 = 



80 Love 

Now, since the Xt and Ys are the real tangent vectors, we should be 
looking at the brackets [XI, Is] instead of  the brackets [Q~, Ps]. Let us then 
compute 

[X4, Y I ] = [ Q 4 - P 4 ,  i ( Q ~ - P , ) ]  

= [Q4, i ( Q , - P , ) ]  - [P4, i (Q~-  P,)] 

= [Q4, iQ,)] - [ Q 4 ,  iP,)] - [P4, iQ,] + [s iPl] 

= - i [ Q , ,  P~)] - i[P4, Q,] 

= - i ( e  + + e - )  

Thus, when we look at the bracket of the real tangent vectors, we see 
�9 that to produce a particle, we automatically obtain the antiparticle! There 
is truly some geometric magic going on hereT 

The new diagonal term, 7/5, in the full representation is evidently the 
graviton. The graviton then commutes with the algebraic factor of all the 
particles. Thus, the graviton acts only on the function factor of the particles. 
This implies that the gravitational interaction is fundamentally different from 
the other interactions and since all particles must have a function factor, 
this allows us to conclude that all particles must interact via gravitation. 

Using the operator representation, Qz=u~05, Pt=usO:, 7/5=iu505, we 
see that [7/5, Q,] = [ius05, ur35] = -iut05 = - i Q i  and [7/5, ez] = [iu505, usOi] = 
iusO~ = iPl. Thus 

[7/5, XI] = [7/5, Q~+ Pz] = - i ( Q , -  PI)  = - Y~ 

[7/5, I:i] = [7/5, Q~-  P,] = (Q,+ P, )  =X~ 

The complex tangent spaces to QAdS are the eigenvectors correspond- 
ing to the eigenvalue of +i: 

T r ~ = linear span of QI 

and the eigenvectors corresponding to the eigenvalue of - I :  

T (~ I)QAdS = linear span of PI 

This calculation shows that 7/5 defines the complex structure on QAdS 
by J X =  [7/5, X] and in turn the space of complex structures on space-time 
is the space of twistors. Thus, there will prove to be some very interesting 
connections between the present work and the twistor program. 
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Fig. 1. 

Yl v H e- 

9 ~t 2 /r 7~- 

[ / t  Y3 P -  

e + zr + P+ 74 

The proton may  interact via the bracket with any of  the boxed particles to change 
particle type. 

The rules for interaction via the Lie bracket (the interactions in which 
a change in particle type occurs) lead to the following rules for determining 
the results of the interaction without computing any brackets: 

1. A particle may interact with its antiparticle or with any particle in 
the same row or column as the antiparticle (Figure 1). 

2. The two interacting particles determine two corners of a rectangle 
with the third corner on the diagonal. 

3. The results of the interaction are the two particles on the opposite 
corners (one of which must be a Yl by rule 2). 

Figure 2 illustrates a possible interaction. The others are listed in Table 
I. For simplicity, the negative signs have been suppressed. All other particles 
are excited states of the above particles, much like high Rydberg states of 
the hydrogen atom, or they are modeled as tensor products of the above 
and resemble nuclei more than elementary particles. These higher energy 
states will be discussed in Part II of this series of papers. 

Vt v H e 

Y2 n :n 

/~ t/ Y3 P -  

e + zr + p+ )'4 

Fig. 2. H = [ p + ,  e- ] .  
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T a b l e  I. The Interactions Predicted by the Lie Bracket 

[P +, P -  ] = Y3 - ~ 4  l ~ - - ,  / r  + ] = 7/2 - -  ~ 4  

[e +, e - ]  = 7q - Y4 [n, ~] = y z -  7/3 
[v, 9] = 7/i - 7/2 [H, fi]  =3'3 -71  

n = [p  +, I t -  ] = [p  +, [ e - ,  ~1] [p - ,  ~r + ] = fi 
H = [ p + , e - ]  [ e + , p - l = F I  

[ H , p + ] = e  + [ H , p - ] = e -  
[e +, 7 r - I=  P [e- ,  zr = v 

[x+,  n] =p+ [~, x ] = p -  

[Tr +, P l = e  + [v, t t - l = e -  
te l  H] = p  + [FI, e ] = p -  
Ie +, v] = ~ +  [~, e--] =~r-  
[fi, n] = ~ [H, a] = v 
[H, v]fi [O, HI =n 

lV,~l=fi [v,n]=H 
[ n , p - I  = 7r - [p+, a] =Tr + 

Once the above rules for interactions are understood, there is an obvious 
generalization possible: 

1. Take any two particles not in the same row or column. 
2. Form the rectangle determined by these particles. 
3. The results of the interaction of the given particles are the particles 

on the opposite corners. This interaction can go either way, depend- 
ing on the relative energies. 

There are only six possibilities generated by the generalized rules not 
listed in Table I; these will be called secondary interactions and are listed in 
Table II. 

These secondary interactions cannot be described in terms of the bracket 
in the matrix representation. But the secondary interactions can be described 
in terms of the curvature of U(3, 2). 

The general curvature 4-tensor on a homogeneous space is given by 

R(x, Y, u, v)=B(R(X, Y)U, v) 

Table  II. The Secondary Interactions 

H ~ -  *--, ne -  FITr + *-..~ fte + 

HJr+ *-*p+ v H a '  ~-*p- ~ 
ne + ~--~p+ P ~e-  *-*p- v 
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where B is the Killing form on u(3, 2). By elementary properties of  the 
Killing form and using 

R(X, Y)U=-[[X, r], U] 

which is valid for a reductive homogeneous space, we obtain 

R(X, I", U, V)= B(R(X, Y)U, V 

=-B([[X, Y], Ul, v) 

=-B([X, YI, [U, Vl) 

Now let us consider one of  the secondary interactions: 

H r c -  ~ n e -  

From Table III we obtain 

H =  [P3, Q,] 

iv- = [P4, Q21 

n = [P3, Qz] 

e -  = [P4, Q,] 

Table IlL Particles as the Curvature of  QAdS 

Algebraic Spacetime Charges 
Particle factor bracket Y1 ?'2 7"3 7/4 

v u,Oz [QI, P2] 1 - 1 0 0 
u201 [Q2, P,] - 1  1 o 0 

H u,83 [Q,,  P3] 1 0 - 1 o 
~I us0, [Qs, P,] - 1  0 1 0 
e-  ul& [QI, P4] 1 0 0 - !  
e + u431 [Q4, P1] - 1  0 0 1 
n u233 [Q2, P31 0 1 - 1  0 

u302 [Q3, P2] 0 - 1 1 0 
re- u204 [Q2,1"41 0 1 0 -1  
n + u402 [Q4, P2] 0 - 1  0 1 
p -  u304 [Q3, P4] 0 0 l - 1  
p+ u403 [Q4, P3] 0 0 - 1  1 
?'1 ulc3t - u505 [QI, PI] 0 0 0 0 
7/~ u~O2 - u505 [Q2, P2] 0 0 0 0 
)'3 u303 - u505 [Q3, P3] 0 0 0 0 
?'4 u404 - u505 [Q4, P4] 0 0 0 0 
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Thus, the interaction of H with lr- via curvature might be written as 

B([P3, Qi], [P4, Q2])=-B(Q, ,  [P3[P4, Q2]]) 

=B(Q,, [[P3, P41, Q2] + [P4, [P3, Q2]]) 

=B(Q,, [?4, [?3, 02]]) 

= - B ( [ P 4 ,  Q,], [P3, Qz]) 

Beginning with Hrc- and following the rules for calculating the curva- 
ture, we arrived at ne-. Thus, the change in particle type may be interpreted 
as an interaction which preserves curvature. In the same way, all of the 
above interactions may be interpreted as interactions involving curvature. 
Thus, it seems that particles can be interpreted as the curvature of space- 
time and the dynamics required is the dynamics of curvature, exactly as 
Einstein envisioned. Except now, the curvature involved is that of U(3, 2), 
not just space-time, and there are five interactions involved, not just gravita- 
tion. Just as Lurcat (1964) used the group manifold of the Poincar6 group 
to obtain a dynamical role of spin, so here we use the group manifold of 
U(3, 2) to obtain the dynamics of a totally unified field theory. Also, this 
calculation shows that the dynamics of the full curvature tensor is involved, 
not just the trace, so the present theory is not just a generalization of the 
Einstein theory to higher dimensions. 

We can now count the different types of interactions in terms of the 
"interaction rectangles." 

Theorem. There are 36 interaction rectangles. 

Proof. There a r e  4 C 2  = 6 ways to choose the two columns defining the 
left and right sides of the rectangle and 4C2 = 6 ways to choose the top and 
bottom. Thus there are 6 x 6 = 36 possible rectangles, all of which are listed 
in Tables I and II. �9 

The listing of these interactions takes us as far as the purely algebraic 
approach can go. The full description of these particles requires that the Lie 
algebra be represented as differential operators, i.e., as vector fields on 
QAdS. In this more complete picture, the above matrices will be replaced 
by vertical vector fields (differential operators) X, Yeu(3, 1) x u(l) and the 
particles will be modeled as fX, h Y with the standard interaction of vector 
fields: 

[fX, h Y] =f(Xh) Y-h(  Yf)X + fh[X, Y] (4.2) 
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This mode of particle interaction is reminiscent of the theory of currents, 
except that in that formulation the first two terms are not present. Thus, in 
the theory of currents, instead of (4.2) we would have (Herman, 1972) 

[iX, h YI =fh[X, Y] (4.3) 

But the "extra terms" in (4.2) are necessary to allow for the probability 
that the two particles interact, but not in a way which would change particle 
type. Also, taking the interaction of elementary particles as (4.3), we would 
lose the geometric meaning of the interaction as the Lie bracket of vector 
fields. 

Gravitation is different from the other forces in that the mass does not 
appear to be an additive quantum number, and hence is not a root of the 
Lie algebra. Consider the interaction of the proton with its antiparticle, 
[ p + , p - ] =  7/3 - 7/4. The resulting quanta are massless. For mass to be an 
additive quantum number would require that the mass of the antiproton be 
the negative of the mass of the proton. The meaning of negative mass is not 
clear to this author. Since mass is not an additive quantum number, it is not 
an eigenvalue of a first-order differential operator and should then perhaps 
be related to the eigenvalue of the second-order Casimir operator of u(3, 2). 
Indeed, we will see that the eigenvalue of the second-order Casimir operator 
of u(3, 2) is the total energy, the eigenvalue of the second-order Casimir 
operator of u(3, 1) is the internal energy, and the difference of these two 
eigenvalues is the Laplace-Beltrami operator on QAdS and its eigenvalue is 
the relativistic mass. 

5. QUESTIONING THE CONNECTION BETWEEN SPIN 
AND STATISTICS 

The study of the connection between spin and statistics has a long and 
venerable history, as related by Pais (1986), and the topic is now standard 
fare in treatments of quantum field theory. The spin-statistics theorem states 
that particles with integer spin obey Bose-Einstein statistics, while particles 
with half-integer spin obey Fermi-Dirac statistics. The exact hypotheses 
under which the theorem is true evolved from the 1930s and culminated with 
Burgoyne (1958) showing that the theorem is true in any field theory satisfy- 
ing the standard hypotheses: 

1. Invariance under proper, orthochronous, Poincarb transformations. 
2. There are no negative-energy states. 
3. The metric on Hilbert space is positive definite. 
4. At spacelike separations, distinct fields either commute or 

anticommute. 
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In the present work: 

1. We replace the Poincar6 group by U(3, 2). 
2. We replace the standard Hilbert space of functions by the space of 

vertical vectors on U(3, 2)/U(3, 1) • U(1). 
3. The natural "metric" on this space is not positive definite and nega- 

tive-energy states may exist. 

Thus, the first three of Burgoyne's hypotheses are not satisfied. Can the 
spin-statistics theorem be proven in this context? A negative answer seems 
inevitable. But if the theorem cannot be proven from the model, the obvious 
question must be, Is the theorem true? Within the model of matter intro- 
duced here, there are two families of particles which seem to cause problems 
with the spin-statistics connection. 

The hydrogen atom consists of a proton and an electron. Since the 
proton and the electron are both fermions, the hydrogen atom has integer 
spin and should be a boson. But particles obeying Bose-Einstein statistics 
do not satisfy the Pauli exclusion principle and a large number of bosons 
can be gathered in an arbitrarily small region of space-time. If we put a large 
number of hydrogen atoms into a small space, there is an imposed structure 
as required by the Pauli exclusion principle. For by combining hydrogen 
atoms we obtain hydrogen molecules. The spectrum of these hydrogen 
molecules is the direct result of the hydrogen atoms obeying the Pauli exclu- 
sion principle. We must conclude that hydrogen atoms do not obey Bose 
statistics. 

A quite different argument holds for a collection of charged pions. The 
pion consists of an electron and an antineutrino and thus has integral spin, 
implying that it should obey Bose statistics, and hence, any number of 7r- 
can occupy the same space. Since they are charged, the laws of electro- 
dynamics imply that to put two 7r- into the same space would require an 
infinite amount of energy. Thus two basic principles of quantum field theory, 
the spin-statistics theorem and electromagnetic repulsion of two particles 
with the same charge, are in conflict. Can a large number of ~r- occupy the 
same space? Since they have integer spin, the spin-statistics theorem says 
yes, but since they have the same charge, electrostatics says no. I believe that 
the more basis of these two "laws" must hold and that the electrostatic 
repulsion will win out. Of course, this conjecture needs to be experimentally 
tested. 

Electrons obey the Pauli exclusion principle. The direct result of this is 
a structure of atoms with different electrons in different states. If the Jr- 
obeys the Pauli exclusion principle, there should be a corresponding structure 
and indeed there is. In the picture developing here, nuclei consist of protons 
exchanging re-. Thus, the structure of nuclei is due to the pions and the 
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protons obeying the Pauli exclusion principle. We must conclude that 
charged pions do not obey Bose statistics. 

I then suggest that there is no connection between spin and statistics and 
that only tile diagonal particles actually obey Bose statistics. This satisfies the 
need to have bosons represented by commuting operators. The "diagonal 
particles" are represented by the Cartan subalgebra of u(3, 1) • u(1), which 
is precisely the maximal Abelian subalgebra. The fermions would then be 
represented by the noncommuting elements of the algebra. 

6. CONCLUSION 

In this paper I have introduced a new classification of the first genera- 
tion of elementary particles and modeled their interactions via the Lie 
brackeL In Part II of this series the "excited states" of these particles are 
identified. Identification of these excited states is a necessary prelude to an 
explicit calculation of the masses of these particles. 

In the geometric framework presented here, there are no Higgs particles, 
no axions, no monopoles--so far, only the observed first-generation parti- 
cles. There is no need for renormalization : since all of the numbers have a 
geometric meaning, they are finite from the start. The spin, charge, baryon 
number, and lepton number are among these geometric numbers (roots of 
the Lie algebra). They are strictly conserved and hence there is no proton 
decay. The parities arise from the geometry without the need for a "superal- 
gebra." Since the particles are realized as part of the geometry of complex 
space-time, we have hope that this may lead to a complete fusion of quantum 
physics and gravity (Kaiser, 1990; Charon, 1988). 

Quantization via the generalized Casimir operators essentially 
"reduces" quantum mechanics to harmonic analysis on the space U(3, 2)/ 
U(3, 1) • U(1), a relation which has been hinted at before (Rawnsley et al., 

1983). 
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